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A transformation is presented which maps an arbitrary two-dimensional region of con- 
nectivity N into N - 1 simply connected regions composed of rectangles. Uniform grids are 
used in the transformed regions to yield finite-difference meshes which are suitable for the 
accurate numerical solution of multibody flow problems. The utility of the transformation 
is verified with its application to the Weis-Fogh mechanism of lift generation. 

The numerical generation of boundary-fitted coordinate systems, specifically 
coordinate systems generated from elliptic partial differential equations, has recently 
been shown to be a powerful tool for use in the finite-difference solution of fluid flow 
problems. The first work which adequately exposes the potential of these coordinate 
systems is that of Thompson, Thames, and Mastin [I]. However, this early work-in 
fact, even the progress which has been made since then-only begins to exercise the 
capabilities of these methods. 

For example, the transformations used in [l] were defined by solutions to the 
Laplace equation. Experience with such transformations shows that one has very 
little control over the resulting finite-difference meshes, making optimum spatial 
distribution of grid points difficult to achieve. In more recent work described by 
Thompson et al. [2] Poisson equations are used to generate the transformations. 
Specification of the source terms in the Poisson equations provides added control 
over the grid generation. Specific expressions for the source terms were suggested by 
Thompson et al. [3], and Ghia, Ghia, and Studerus [4] have carried out some research 
on the choice of source terms to generate a grid with desirable properties. However, 
more research is needed in this area to develop the capability of easily generating 
grid systems with efficient distributions of points for a wide variety of flow problems. 

In addition to the form of the generating equations, the shape of the computational 
region into which the physical region is mapped influences the shape of the mesh in 
physical space. In [l] a doubly-connected flow region was mapped onto a rectangle 
with one side formed by the body surface. The restriction to such a transformed region 
is quite limiting, although the resulting grids are adequate for a body in an infinite 
fluid. Thompson et al. [3] presented a transformation in which a body is mapped to a 
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slit within a rectangle. This procedure can be useful when resolution is important 
near one or more of the exterior flow boundaries. By mapping into a region consisting 
of two adjoining rectangles Thompson et al. [2] demonstrated a transformation 
which is useful for concentrating large numbers of grid points in the neighborhood 
of the body. This idea was carried one step further by Haussling and Coleman [5] 
with a transformation for flow about a body below a free surface onto an H-shaped 
computational region. 

Recently there has been much interest in thq application of the finite-element 
method to fluid flow problems (see, for instance, Connor and Brebbia [6]). One reason 
for this interest is the finite-element capability for efficiently fitting complicated 
geometries. However, the development of numerically generated coordinate systems 
gives such a relatively easy to use capability to finite-difference schemes even for time- 
dependent geometries. 

The presentation of a variety of transformed regions as mentioned above serves to 
extend the flexibility of these coordinate system generation techniques. The present 
paper is intended to further demonstrate this flexibility in application to multibody 
problems. Thompson et al. [3] described how flow regions involving multiple bodies 
could be handled by transformations onto rectangles or slit rectangles. While such 
transformations may be adequate for some problems, in other cases they cannot 
provide efficient grid point distributions. With both of these transformations, grid 
points cannot be added near the bodies without also adding grid points to the mesh 
in the far field. Recently Long [7], using these methods, had difficulties in obtaining 
suitable coordinate systems for some two-body problems. He resorted to the use of an 
additional complex variable transformation. This paper describes a new type of 
multibody transformation which has some desirable properties for optimum grid 
point distribution. It should extend the class of problems which can be handled by the 
elliptic generating system approach. The workability of the transformation is verified 
with its application to the Weis-Fogh mechanism of lift generation [S, 91. 

THE MULTIBODY TRANSFORMATION 

It has long been recognized that, in studying flows about a single body, the use of a 
cylindrical coordinate system often results in an efficient finite-difference scheme. The 
grid expands naturally with distance from the body and the rate of expansion can be 
varied by additional grid stretching. Such a coordinate system for an arbitrary body 
can be generated numerically as shown by Thompson, Thames, and Mastin [l]. 

When the flow about more than one body is considered, it would sometimes be 
useful to have a coordinate system which is locally cylindrical about each body 
individually but which in the far field is cylindrical about the collection of bodies. 
This scheme allows grid points to be concentrated near the bodies without using an 
undue number of points in the far field. Such a transformation will now be described. 
For simplicity, the details will be presented for two bodies; extension to more than 
two is straightforward. 
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Consider two bodies of arbitrary shape as represented in Fig. la. The bodies are 
enclosed by a computational outer boundary. Cuts (dashed lines) are made from 
A’/B’ to A/B and from E/E’ to F/F’. The triply-connected physical region in (x, y)- 
space is to be mapped to the two simply-connected computational regions in (E, q)- 
space as shown in Fig. lb. The boundary of each computational region consists of 
the images of one of the bodies, half of the outer boundary, and portions of the cuts. 

b 

FIG. 1. The field transformation for two Bodies: (a) physical region, (b) computational regions.? 

A uniform grid is laid out in the computational regions. A grid line such as 1, which 
extends from AH to BC in the computational region, is to surround the body AB 
in physica space. Similarly, grid line 2 will surround body A’B’. Grid line 3, which 
extends in the computational plane in two segments from FG to DE and from D’E’ 
to F’G’, will surround the pair of bodies. Grid lines such as 4 and 5 will extend from 
the bodies to the outer boundaries. Lines such as 6 and 7, each of which is split into 
two segments in the computational region, will connect the two bodies. 
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The two computational regions will be of different size unless the number of grid 
points on each body and the number of grid lines surrounding each body is the same. 
The transformation will depend on time t if the relative position of the bodies changes 
with time. The transformation is singular at the points D/D’ and G/G’ so that care 
will be needed in the finite-difference treatment of the neighborhood of these points. 
The existence of such singularities is not confined solely to this type of mapping. 
They occur whenever a smooth line such as CDE in Fig. la is mapped to a confi- 
guration with a corner such as CDE in Fig. 1 b. The two-body transformations 
presented by Thompson et al. [3] also contain such singularities but in those cases 
they are at the body surfaces. Thus, if any accuracy problems do arise from such 
points, the present transformation has an advantage in that the singularities are 
removed from the body surfaces. 

The desired transformation 

E = 2x4 Y, t>, 71 = Il(x, Y9 t> (1) 

can be found as a solution of Poisson equations 

with appropriate .boundary conditions. The details of the coordinate system can be 
controlled by specification of the source functions P and Q. Following standard 
procedure, the roles of the dependent and independent variables are interchanged 
to yield 

(3) 

where 

CY ‘= x,2 + yq2, B = X&i- Y,Y, T 

y = XP2 + Yc2, J = X,Yn - XrlY,. 
(4) 

The system (3) is to be solved in the transformed computational region. The boundary 
conditions on A’B’ and AB (Fig. lb) are the specified (x, y)-coordinates of the bodies. 
Similarly the (x, y)-coordinates of the outer boundary are specified on EF and E’F’. 
The remaining boundary conditions apply to the pairs of boundary segments in the 
computational region which coincide in physical space. The (x, y)-coordinates ofAH 
equal those of BC; similar conditions apply to the boundary pairs A’H’ and B’C’, 
FGH and F’G’H’, and CDE and C’D’E’. Although the exact solution of (3) subject to 
these boundary conditions is a formidable problem, an approximate solution can be 
found easily by solving an appropriate finite-difference approximation to (3) on the 
uniform mesh of the computational region. 
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A SAMPLE APPLICATION 

The superior hovering performance of certain insects was attributed by Weis-Fogh 
[8] to a previously unknown mechanism of lift generation. This mechanism was 
analyzed by Lighthill [9]. In part of his analysis, Lighthill considered the two- 
dimensional flow about two infinitely long wings. The wings lie side by side initially 
and then open as each rotates about one end (Fig. 2a). Subsequently the wings separate 
through oppositely directed horizontal translations (Fig. 2b). To obtain a reasonable 
numerical solution to the Navier-Stokes equations for such a time-dependent 
geometry appears to be a difficult problem. However, with the transformation 
described in the previous section this problem can be attacked. Ultimately the forces 
on the wings, in particular the generation of lift, can be computed. 

a b 

FIG. 2. Wing motions of the Weis-Fogh mechanism. 

To demonstrate the feasibility of such a study, some preliminary calculations have 
been carried out. In order to avoid numerical difficulties associated with treating 
infinitely thin plates [lo], elliptic cylinders with a thickness ratio of 0.01 are used. 
Since the transformation can be applied only to two distinct bodies, there is a gap 
between the fixed tips of the plates amounting to about 0.03 chord lengths while 
they are rotating. The flow for this configuration will be essentially the same as for 
infinitely thin plates in contact. 

Equations (3) and (4) were replaced by finite-difference approximations using 
second-order central differencing. The finite-difference equations were solved using 
successive overrelaxation (SOR). The calculations were carried out on a Texas 
Instruments Advanced Scientific Computer, a vector processor. In the usual SOR 
procedure each iteration is carried out by updating values at each grid point in turn, 
for instance by updating all points in natural succession on the first row and then 
moving from row to row. To accelerate convergence, already updated values at 
neighboring grid points are used whenever they are available. This use of latest 
values prohibits vectorization since each step in the calculation cannot be started 
until the previous step is completed. However, if the mesh is divided into sets of non- 
adjacent points and relaxed in a series of partial sweeps, in the so-called “red-black” 
manner, the calculations can be vectorized with no deterioration of convergence rate. 
Hayes [I I] discussed this vectorization for the Laplace equation in rectangular 
coordinates. She applied the standard SOR scheme in two half-sweeps. For grid 
points with a standard (i, i) numbering system she alternately updated those with 
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FIG. 3. Meshes for various configurations: (a) 0 = O”, (b) 0 = lo”, (c) 0 = 20”, (d) 8 = 
(e) B = 39”, (f) 0 = 45” and a separation of one chord length. 

30”, 

i $ j even and those with i + j odd. Each half-sweep vectorized and the overall 
scheme was quite efficient. For the present calculations the grid points had to be 
divided into four groups-defined by the four possible odd-even combinations of i 
and j-since the presence of the cross-derivative terms in Eqs. (3) leads to nine-point 
finite-difference formulas. It was verified that the desirable properties of this red-black 
method extend to the mesh generation equations and lead to low execution times. 

The near-field grids for various body configurations are presented in Fig. 3a-f. 
The grid system is composed of 8 lines surrounding each body, 21 lines enclosing 
the pair, I5 lines extending from each plate to the outer boundary, and 15 lines 
connecting the plates. A mesh based on a transformation which required all grid lines 
leaving the bodies to extend to the outer boundary would require at least 56 % more 
grid points in the far field to achieve the same accuracy in the near field. Savings 
would be even greater for problems with more than two bodies. For the present 
calculations a further saving results through use of the symmetry about .Y = 0 to 
limit both the grid generation and fluid flow calculations to one-half of the region. 

Grid points are placed on the body surfaces with the aid of local elliptic coordinate 
systems. The relationship between rectangular coordinates (x’, JI’) and elliptic 
coordinates (q’, 6’) for an ellipse with center at (x’ = 0, y’ = 0) and oriented at an 
angle 6’ to the x’, y’ system is 

X’ = -cash 7’ cos 5 sin 6’ + sinh 7’ sin [’ cos 9, 
J” Yzz -cash v’ cos 5’ cos 6’ - sinh 7’ sin [’ sin 0. 

(5) 

The surface of the ellipse is described by 7’ = v1 where Q is the thickness ratio. The 
grid points on this surface are placed according to 
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The use of equal spacing 06 in the elliptic system results in concentrations of grid 
points near the areas of high curvature at the tips of the ellipses. The incorporation 
of 0 into (6) allows the grid points to slide over the body surfaces as 0 changes with 
time. If points are fixed to the body surfaces, severe distortions of the grid occur as 
the bodies move. 

The outer boundary is a circle with center at the origin and a radius of about five 
chord lengths. An outer boundary this close to the bodies might significantly effect 
force calculations but is sufficient for the demonstration purposes of the present 
calculations. The uniformly spaced grid points on this boundary are the only points 
that do not change position with the movement of the plates. 

It was found that the use of Laplace equations to generate the transformation is 
unsuitable. Figure 4 shows a grid generated with such a system. The regions near the 
points D/D’ and G/G’ (Fig. 1) are poorly resolved. Source terms are needed to pull 
grid lines toward these points. The source terms take the form 

W, q, t> = C,(t) sgn(f - 53 ev-[(f - &J” f (‘I - 710W2~, 
Q(5, r, t> = G(t) s&71 - Q> expi-K< - &J” + (7 - ~JW 

(7) 

as suggested by Thompson et al. [3] where (5, , q,,) are the (5, q)-coordinates of the 
point to which attraction is desired. The values of the parameters Cr and C, needed 
for the generation of suitable meshes were determined experimentally for the confi- 
gurations of Figs. 3a, e, and f. At other times values of C1 and C, are assigned by 

FIG. 4. A Mesh resulting from a transformation generated with Laplace equations. 
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linear interpolation among the values at these three times. Further improvements 
might be called for near 6 = 0” (Fig. 3a) when the resolution near the singular points 
is still somewhat lower than in the surrounding area. The construction of suitable 
source terms is an important topic of current research. One desirable goal is their 
automatic generation. 

Derivatives in the computational plane are not well defined at points where the 
transformation is singular such as D/D’ and G/G’. If a grid point is placed at such a 
location one-sided difference expressions must be employed. To avoid such a compli- 
cation, grid points were not placed at these locations. As a result two hexagonal cells 
appear in the grids (Fig. 3). Typical grid point configurations in the vicinity of D/D’ 
are presented in Fig. 5. An ambiguity arises in the choice of finite-difference operators 
in such a configuration. Consider a point such as 3 in Fig. 5. The finite-difference 
approximations to Eqs. (3) will involve eight neighboring points 2,4, 12, 13, 14, 15, 16, 
and either 5 or 1. The numerical results should converge to the desired solution 
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FIG. 5. Grid points near D/D’: (a) physical region, (b) computational regions. 
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independent of this choice as the mesh is refined. In comparing numerical potential 
flow solutions with exact solutions the author has yet to find convergence problems 
associated with such grid regions. 

VISCOUS FLOW CALCULATIONS 

Two viscous flow computations were carried out. In one, the plates opened and 
then closed between 0 = 0” and 0 = 45”. In the second, after opening to 0 = 45”, 
the plates then separated at constant speed to a separation of about one-half chord. 
The characteristic length and velocity scales used in defining dimensionless quantities 
are a, the half chord, and U the maximum speed of the tips of the plates. The plate 
motion for the opening and closing case is defined by 

e(t) = Qn[l - cos(Bt/rr)], (8) 

a sinusoidal oscillation starting from 8 = 0” at t = 0 and varying between 6’ = 0” 
and 8 = 45”. The Reynolds number Re = 2iJa/v is 30 where v is the kinematic 
viscosity. Such a motion involves an alternating acceleration and deceleration. The 
numerical treatment of various acceleration models was discussed by Lugt and 
Haussling [ 121. 

The Navier-Stokes equations in dimensionless stream function-vorticity form are 

wt - &,w, t dw, = GJ,, + w,,)/Re, (9) 

VL! -t- *ml = w9 (10) 

where II, is the stream function and o is the vorticity. 
The boundary conditions on the symmetry line are 

$=o=O at x = 0. (11) 

Far from the bodies 

and initially 

*=o=o at the outer boundary 02) 

$=w=O at t = 0. (13) 

The boundary condition at the body is that the fluid velocity at the body surface 
equals the velocity of the body or 

at the body surface, (14) 
(15) 

where s” and ti are unit vectors in the directions tangential and normal to the body, 
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respectively, and vB is the local velocity of the body surface. Equation (15) can be 
integrated to yield 

where 

# = h + co> at the body surface, (16) 

& = 1 VE . fi ds. (17) 

When the plates are essentially in contact the quantity c is chosen such that the 
stream function is zero at the vertex tips of the plates since these tips are at the 
symmetry line on which ~,4 = 0 according to (11). After the plates have separated, c 
must be determined such that the pressure remains single valued. This is done 
according to the procedure suggested by Sood and Elrod [13]. The pressure p is 
computed by numerical integration of the momentum equation over the closed body 
contour. If the value of c is incorrect the pressures at the coincident starting and ending 
points of the integration will differ. To correct this, an auxiliary problem 

*;z + YLI = 0, 
*’ = 0 at x = 0, 

$b’=O at the outer boundary, 

(18) 
(19) 

(20) 

at the body surface (21) 
(22) 

is solved at each time. The application of the nonslip condition (22) to #’ implies the 
existence of a vortex sheet on the surface. An auxiliary multiple-valued pressure p’ is 
computed numerically from this vorticity. Then c is chosen such that the sum of the 
existing and auxiliary solution J,!J + c#’ results in a single-valued pressure p + cp’. 

For the calculations, the governing equations and boundary conditions must be 
transformed to .$, v-coordinates. Equations (9) and (10) become [3] 

where 

(23) 

(24) 

(25) 

The time derivatives in (23) are local derivatives for fixed (5, 7). The terms involving 
time derivatives on the right-hand side of this equation are required by the time 
variation of the (x, y)-coordinates of points in the (4, q)-plane. 

The normal derivative of 4 at a boundary can be written in the form [I] 

$n = [$A& + 4 - Mg’ye + --dll[J(~ + W>“>““l, (26) 
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where g’ = dy/dx, the slope of the body surface. This can be written in the form 

$k = (W - 9kY>/VY”“> 

by multiplying numerator and denominator by xE . 
Thus, from (14) 

(27) 

(AS - $4JY>/vY1’2) = VI3 . f at the body surface. (28) 

The numerical scheme for the solution of this problem is essentially that used by 
Thompson et al. [3]. Equation (23) is replaced by a finite-difference approximation 
through the use of backward time and central space differencing to yield a fully 
implicit scheme for advancing the vorticity. The resulting equations are solved 
iteratively in the red-black manner so that latest values can be used in vectorized 
calculations. 

Initially an extension of the explicit DuFort-Frankel scheme previously used 
successfully on viscous flow problems [14] was tried. However, in the present case a 
severe limitation on the time step, necessitated by the very small distances between 
grid points in portions of the flow region, made the scheme unsuitable. When the 
plates are almost in contact, the region near the vertex tips is overresolved. However, 
the grid points are needed at later times when the bodies move apart. 

The nine-point finite-difference approximation to (16) is solved iteratively using 
SOR in the red-black manner to achieve vectorization as already discussed for 
Eq. (3). 

The key to a fast iterative method for a time-dependent viscous flow problem is the 
computation of the vorticity on the boundary. Many schemes use a finite-difference 
approximation to (24) which incorporates the nonslip condition (28). On the other 
hand, Israeli [15] proposed a method for applying the nonslip condition directly in 
an iterative manner. Thompson et al. [3] improved upon Israeli’s scheme. In any case, 
relaxation parameters are needed to achieve optimization. In this work both Israeli’s 
method without Thompson’s improvement and a scheme based on (24) were employed. 
Since neither was fully optimized, no conclusions are made concerning their relative 
efficiency. 

The time-advancement proceeds in the following manner: 

1. Initial approximations for wr,J’, #$, ${ytj+l, xcT1, and yz”,:’ are found by 
linear extrapolation from time levels IZ - 1 and n. 

2. The new locations of grid points on the body surface (xi>‘:‘, yj$) are deter- 
mined, based on the body position at time level n + 1. 

3. Grid point coordinates (xt;“, ycT1) are determined by iterating on x and y 
according to the finite-difference approximation to (3). Since the geometry does not 
change much in one time step, one or two iterations usually suffice. 

4. When necessary, auxiliary stream function values &‘J+” are determined by 
iteration according to the finite-difference approximation to (18). Here again one or 
two iterations is usually sufficient. 
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5. Interior vorticity values w:,;’ are updated according to (23). 

6. Stream function values #T,$’ are updated with one iteration on (24). 

7. The vorticity on the boundary w::” is updated so as to enforce (28). 

8. Pressure is computed and the proper amount of the auxiliary stream function 
z,!J’ is added to # so that the corrected pressure is single-valued. 

Steps 5-8 are repeated until suitable convergence is achieved. The goal is to handle 
most of the time advancement by the extrapolation in step 1 so that only a few 
iterations are needed in the following steps to handle minor corrections. 

The results for the opening and closing motion were computed in 210 time steps 
with dt = 0.01. Much larger time increments would most likely lead to very in- 
accurate solutions. The number of iterations per time step carried out on the Aow field 
(w and Q!J), with a relatively unoptimized version of Israeli’s vorticity calculation, was 
variable but usually less than 100. The flow results were computed with about 5 min 
of Texas Instruments ASC central processor time. 

Figures 6 and 7 display streamlines and lines of constant vorticity at various times 
for the opening phase of motion. Streamlines of Fig. 6a for 0 = 11’ are quite similar 
to potential flow streamlines except near the bodies. At the bodies the streamlines 
are tangent to the direction of the body motion in accordance with the nonslip 
condition. As shown in Fig. 7a, most of the vorticity is generated near the moving 
tips of the plates. Vorticity is convected into the opening between the plates as the 
fluid rushes into this gap. 

The streamlines at B = 22” in Fig. 6b indicate flow separation from the body 
surfaces at the moving tips. The separation is apparent in the reversal of the velocity 
component tangential to the body surfaces just behind the tips. Associated with this 
flow separation are regions of vorticity of sign opposite to that of the vorticity in 
front of the tips. This vorticity of opposite sign is first noted on the body surfaces, 
immediately behind the tips at 0 N 5”. 

The vorticity lines at 0 = 33” (Fig. 7c) show local vorticity extrema away from the 
body surfaces and hence reveal the shedding of vortices. However, as predicted by 
Lighthill [9], because of the low Reynolds number and the flow of the fluid into the 
opening between the plates, significant amounts of vorticity do not travel any great 
distance from the body surfaces. 

Figures 8 and 9 show the closing phase of the motion. At 19 = 40”, 31”, and 20” the 
dissipating vortices generated in the opening phase are still visible. The flow again 
separates behind the moving tips. In the late stages of the closing a jet develops as 
fluid is squeezed from between the plates. 

In Figs. 10 and 11 results are shown for the plates separating at constant speed 
after having first opened to 0 = 45”. Fluid flows through the growing gap between 
the plates and vorticity from behind the leading tips is convected into the gap. Once 
more as predicted by Lighthill [9] a starting vortex such as that shed from the trailing 
tip of a single airfoil accelerated from rest is not present here. The separating phase 
was computed in 100 time steps with dt = 0.01 using a somewhat optimized body 
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b “j\ 

FIG. 6. Sequence of streamlines for the opening phase: (a) 8 = ll”, (b) f3 = 22”, (c) B = 33”, 
(d) t’ = 41”. 

FIG. 7. Sequence of equal-vorticity lines corresponding to the streamlines of Fig. 6. 
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cl 
c 

FIG. 8. Sequence of streamlines for the closing phase: (a) .O = 40”, (b) B = 31”, (c) 0 = 20”, 
(d) 6’ = 9”. 

FIG. 9. Sequence of equal-vorticity lines rprresponding +,o the streamlines of Fig. 8. 
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FIG. 10. Sequence of streamlines for the separating phase. 

a 

b d 

FIG. 11. Sequence of equal-vorticity lines corresponding to the streamlines of Fig. 10. 
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vorticity calculation based on Eq. (24). The number of iterations per time step 
averaged about 12 so that even with the extra calculation for the stream function 
values on the bodies only 43 set of TI-ASC central processor time was used. 

CONCLUSION 

Boundary-fitted coordinate techniques are powerful tools for solving complex flow 
problems. There is a wide variety in the type of transformations that can be applied. 
A transformation suitable for multibody problems has been presented and tested 
successfully on a model for the Weis-Fogh mechanism of lift generation. Such 
numerical methods, especially when combined with such recent computer technology 
as high-speed vector processing, allow the accurate solution of flow problems which 
could not otherwise be tackled. 
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